
Dr. Qadri Hamarsheh Probability & Random Variables 1 

Philadelphia University 
 
 

Lecture Notes for 650364 

Probability & Random Variables 

Chapter 2:  

Lecture 5: Random Variables-Introduction, Distributions, Density 

and Mass Functions 

Department of Communication & Electronics Engineering 
 

Instructor 
Dr. Qadri Hamarsheh 

 

Email:  qhamarsheh@philadelphia.edu.jo 
Website:  http://www.philadelphia.edu.jo/academics/qhamarsheh 

http://www.philadelphia.edu.jo/academics/qhamarsheh


Dr. Qadri Hamarsheh Probability & Random Variables 2 

Outlines 

1) The Random Variable Concept, Introduction 

2) Cumulative Distribution Function (CDF) 

3) Probability Density and Mass Functions 

 
The Random Variable Concept, Introduction 

 Variables whose values are due to chance are called random 

variables. 
 A random variable (r.v) is a real function that maps the set of all 

experimental outcomes of a sample space S into a set of real 

numbers. 
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 We shall represent a random variable by a capital letter (such as X, 

Y, or W) and any particular value of the random variable by a lower 

case letter (such as x, y, or w) 

 Given an experiment defined by a sample space S with elements s, we 

assign to every s a real number X(s) according to some rule and call 

X(s) a random variable 

 There are three types of random variables: 
1) Discrete Random Variable (random variables  have 

discrete values; the sample space can be discrete, 

continuous or even mixture of discrete and continuous) 
2) Continuous Random Variable (continuous range of 

values, it cannot be produced from a discrete sample space 

or a mixed sample space). 
3) Mixed Random Variables (less important type of 

random variables) 
o Example: (Discrete Random Variable):  

 An experiment consists of rolling a die and flipping a coin. 

The sample space is shown in Fig. below and the random 
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variable X maps the sample space of 12 elements into 12 

values of X. 

 Function X chosen such that  

 A coin Head (H) outcome corresponds to positive values 

of X that are equal to the numbers that show up on the 

die. 

 A coin is Tail (T) outcome corresponds to the negative 

values of X that are equal in magnitude to twice the 

number that shows up on the die  
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o Example: (Continuous Random Variable) 

 Figure below illustrates an experiment where the pointer on 

a wheel of chance is spun. The sample consists of the 

numbers in the set {𝟎 <  𝒔 ≤  𝟏𝟐} and the random variable is 

defined by the function 𝑿 =  𝑿 ( 𝒔 )  =  𝒔 𝟐 

 
 Conditions for a Function to be a Random Variable: 

o It not be multivalued 

o The set {𝑿 ≤  𝒙} shall be an event for any real number x 

o 𝑷{𝑿 ≤  𝒙} is equal to the sum of the probabilities of all the 

elementary events corresponding to {𝑿 ≤  𝒙}. 

o The probabilities of events {𝑿 =  ∞} and {𝑿 =  −∞} be 0: 

𝑷{𝑿 =  ∞}  =  𝟎 𝑷 {𝑿 =  −∞}  =  𝟎 
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Probability Distributions 
 A probability distribution consists of the values of a random variable 

and their corresponding probabilities. 
 There are two kinds of probability distributions: discrete and 

continuous. 

 If X is discrete, then the values 𝑷(𝑿 =  𝒂𝟏), 𝑷(𝑿 =  𝒂𝟐), … tell us 

everything we need to know about X. 

 Let X be a discrete random variable, and suppose that the possible 

values that it can assume are given by 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, . .. , arranged in some 

order. Suppose also that these values are assumed with probabilities 

given by  

 
Probability function, also referred to as probability mass function 

(PMF), given by 
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 In general, 𝒇 (𝒙) is a probability function if 

 
1) The 𝒇(𝒙) is a function with nonnegative values 
2) The sum of the probabilities of a probability distribution 

must be 1. 
o Example: When a die is rolled 

 
o Example: Construct a discrete probability distribution for the 

number of heads when three coins are tossed. 
o Solution: 

 Recall that the sample space for tossing three coins is  
TTT, TTH, THT, HTT, HHT, HTH, THH, and HHH. 

 The outcomes can be arranged according to the number of 

heads, as shown. 
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0 heads TTT 

1 head TTH, THT, HTT 

2 heads THH, HTH, HHT 

3 heads HHH 

 Finally, the outcomes and corresponding probabilities can 
be written in a table, as shown. 

 
o Roll two dice, let Y be the maximum of their outcomes. 
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o Roll two dice, let X be the sum of their outcomes. 

 
o A discrete probability distribution can also be shown 

graphically by labeling the x axis with the values of the 

outcomes and letting the values on the y axis represent the 

probabilities for the outcomes. 
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Cumulative probability Distribution Function (CDF) 

 The probability of the event {𝑿 ≤  𝒙} must depend on x. Denote 

 
Where x is any real number 

We call this function, denoted 𝑭𝑿 (𝒙) the cumulative probability 

distribution function (CDF) of the random variable X (or just the 

distribution function of X) 

 Properties Distribution Functions: 
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 Distribution Function for Discrete Random Variable: 

o The distribution function of a discrete random variable X can 

be obtained from its probability function by noting that, for all 

x in (−∞ , ∞) 

 
o If X takes on only a finite number of values x1, x2, . . . , xn, then 

the distribution function is given by 

 



Dr. Qadri Hamarsheh Probability & Random Variables 12 

o The distribution function of a discrete random variable X is 

given by: 

 
o Example: 

 

 
Where u(.) is the unit step defined by: 
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o Example: Suppose that a coin is tossed twice so that the sample 

space is 𝐒 =  {𝐇𝐇, 𝐇𝐓, 𝐓𝐇, 𝐓𝐓}. Let X represent the number of 

heads that can come up. 
 It follows that X is a random variable as in the table 

 
 the probability function corresponding to the random 

variable X 

 
Then 
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The probability function is thus given by 

 
 the distribution function for the random variable X 
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Probability Density Function (PDF) 

 Continuous Random Variables: A non-discrete random variable X is 

said to be absolutely continuous, or simply continuous, if its 

distribution function may be represented as 

 
where the function f (x) has the properties 

 
 A function f (x) is more often called a probability density function 

or simply density function 

 Interval probability that X lies between two different values, say, a 

and b, is given by 
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 The probability density function (or density function) (PDF) is 

defined as the derivative of the distribution function: 

 
 Properties of Density Functions: 

 
 Density Function for Discrete Random Variable (mass function): 

 The density function of a discrete random variable X is given by: 
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o Example: 

 

 
Where 𝜹(. ) is the unit impulse defined by: 

 
o Example: Let X have the discrete values in the set  

{−𝟏, −𝟎. 𝟓, 𝟎. 𝟕, 𝟏. 𝟓, 𝟑}. 

The corresponding probabilities are  

{𝟎. 𝟏, 𝟎. 𝟐, 𝟎. 𝟏, 𝟎. 𝟒, 𝟎. 𝟐}: 
The distribution function: 
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The density function: 
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o Example: The corresponding distribution and the density 

functions for the wheel of chance experiment are shown in Fig. 
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o Example :  

a) Find the constant c such that the function  

 
Is a density function, 

b) Compute 𝑷(𝟏 < 𝑿 <  𝟐). 

c) Find the distribution function for the random variable 
d) Use the result of (c) to find 𝑃(𝟏 <  𝒙 ≤  𝟐). 

Solution:  

a) using the 2 property 

 
and since this must equal 1, we have c = 1/9 

 

 



Dr. Qadri Hamarsheh Probability & Random Variables 21 

b)    

 
c)   

 
If 𝒙 <  𝟎, then 𝑭(𝒙) = 𝟎.  
If 𝟎 ≤  𝒙 <  𝟑, then 

 
If 𝒙 ≥  𝟑, then 
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Thus the required distribution function is 

 
d)   

 
 


